Name of Course	: CBCS B.A. (Prog)
Unique Paper Code	: 62351101_OC
Name of Paper	: Calculus
Part	: I
Duration	: 3 hours
Maximum Marks	: 75 Marks

Attempt any four questions. All questions carry equal marks.

1.
$$f(x) = \begin{cases} \frac{x(e^{1/x} - e^{-1/x})}{e^{1/x} + e^{-1/x}}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

Show that f(x) is continuous but not derivable at x = 0and also for the function

$$y = \frac{\sin^{-1}x}{\sqrt{1 - x^2}},$$

con

show that

$$(1 - x^2)y_{n+2} - (2n+3)xy_{n+1} - (n+1)^2y_n = 0$$

$$f(x) = \begin{cases} \frac{1}{2} - x & 0 \\ \frac{3}{2} & 0 \\ \frac{3}{2} & x, if \frac{1}{2} < x < 1 \end{cases}$$

$$f(0) = 0, f\left(\frac{1}{2}\right) = \frac{1}{2}, f(1) = 1.$$

Show that f(x) is discontinuous at $x = \frac{1}{2}$, 1 and also if $z = sec^{-1}\left(\frac{x^2+y^2}{x+y}\right)$

show that

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 2cotz.$$

and also if
$$u = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$

show that

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0.$$

Download all NOTES and PAPERS at StudentSuvidha.com

3. Show that the tangents to the curve

$$x^3 + y^3 = 3axy$$

at the points where it meets the parabola $y^2 = ax$ are parallel to the axis of y

and find the asymptotes of the curve

$$4x^3 - 3xy^2 - y^3 + 2x^2 - xy - y^2 - 1 = 0.$$

4. Find the position and nature of the double points on the curve

$$y(y-6) = x^2(x-2)^3 - 9$$

and trace the curve $ay^2 = (x - a)(x - 5a)^2$.

5. Verify the Rolle's Theorem for the function $f(x) = x(x-2)^3 in[0,2]$

and show that for x > 0

$$\frac{tanx}{x} > \frac{x}{sinx}, 0 < x < \pi/2.$$

6. Assuming the possibility of expansion prove that

$$\frac{x^2}{2} + \frac{x^4}{12} + \cdots$$

and also verify Lagrange's Mean Value Theorem for $f(x) = x^2 - 3x - 1$ in [1,3].

$$f(x) = x^2 - 3x - 1$$
 in [1,3]